Regulation and Risk Assessment of Engineered Algae (Summary of Conference Presentation)

Last month, I gave one of the plenary talks at the The 4th International Conference on Algal Biomass, Biofuels and Bioproducts in Santa Fe, NM.  As I reported in the blog last month, my presentation covered regulatory and scientific issues relating to the use of genetically modified algae for the production of fuels and chemicals. My slides from the presentation are available at my SlideShare site, but in today’s post I’ll summarize some of the key points I made during the talk, with links to posts on this blog where some of this information has previously been presented.

I began by providing an very brief overview of some of the strategies being contemplated for the use of advanced biotechnology to improve industrially useful algae strains (January 21, 2010 post). I also provided  a historical perspective on how the U.S. biotechnology framework emerged in the 1980s, and some of the scientific assumptions on which it was based (April 6, 2010 post). Throughout the presentation, I tried to stress the point that, although the U.S. (and international) regulatory frameworks inevitably single out certain genetically modified organisms for scrutiny beyond that given to strains improved by classical, nonrecombinant methods, any needed regulatory approvals for engineered organisms can easily be obtained with proper planning and management.

I next discussed EPA’s biotechnology regulations under the Toxic Substances Control Act (TSCA), which have been frequently discussed here on the blog beginning on April 21, 2010 and most recently earlier this week.  Although at times in the past there has been some uncertainty about the jurisdiction for industrial uses of engineered algae (June 9, 2010 post), it is now clear that EPA considers both algae and cyanobacteria to fall within the scope of its regulations. I described these regulations and the requirements they impose both for research and commercial use of those engineered organisms falling within that scope in posts of May 3, 2010 and May 11, 2010, and I discussed the impact of these rules on use of modified algae in a post on September 17, 2013. Commercial uses (or importation into the U.S.) of intergeneric microorganisms for those uses within the scope of TSCA require filing Microbial Commercial Activity Notices (MCANs) with EPA. Although many R&D activities would be exempt from MCAN reporting if carried out in a laboratory or other contained facility, any proposed outdoor testing of an engineered microorganism or algae for a TSCA-regulated purpose would require EPA review and approval through the filing of a TSCA Experimental Release Application (TERA).

I spent a bit of time in the talk discussing TERAs, a subject which I’ve also covered in two recent blog entries (posts of November 4, 2013 and December 19, 2013). Although TERAs require submission to EPA of a fair amount of information about the engineered organism, the proposed outdoor experiment, and the means of controlling and monitoring the experiment, the regulations provide for an expedited (60 day) review. But more importantly, the TERA process provides a reasonable mechanism to allow industry and academic researchers to conduct stepwise outdoor testing of modified algae under an appropriate level of regulatory oversight. Specifically, EPA approval of a TERA would allow investigators from either industry or academia to conduct small-scale experimentation with minimal government oversight, but under conditions enabling the gathering of data (e.g. on potential dispersal or environmental survival of the organism) that will be useful to assess the risks of larger-scale outdoor uses. As I described in the December 19, 2013 post, EPA recently reviewed and approved the first TERAs for open-pond use of modified algae, submitted by Sapphire Energy; tests which have already been carried out under these approvals.

I also mentioned EPA’s recent experience in reviewing MCANs for algae or cyanobacteria. I have just described these MCANs, from Solazyme (use of microalgae for chemical production) and Joule (use of modified cyanobacteria in photobioreactors for production of ethanol) in a blog post earlier this week (July 7, 2014). Joule recently announced EPA’s favorable review of its MCAN. This was one of my major projects at Joule during my time in the company as director of regulatory affairs.

In the talk, I next briefly reviewed the biotechnology regulations of the U.S. Department of Agriculture (USDA). These are the regulations that USDA has used since 1987 to regulate agricultural biotechnology, including field testing and commercialization of transgenic plants. I gave an overview of these rules (in the context of transgenic plants) in a series of blog posts beginning on May 18, 2010. Some within the algae community have, over the years, expressed a desire for USDA, rather than EPA, to have regulatory jurisdiction over engineered algae, but the way the USDA regulations are drawn, and the ways in which the rule defines which organisms are covered, make it unlikely that they would be applicable to most engineered algae proposed for use in fuel or chemical production.  In the talk, I raised the possibility that, even if EPA turned out to be the lead agency for algae proposals, USDA’s body of experience in algae research could be utilized by having appropriate USDA scientists or outside experts participate in EPA decision-making and risk assessments.

The remainder of my talk covered the scientific issues underlying the risk assessments that are needed to support regulatory decision-making for industrial uses of modified algae. I have discussed some of these issues in a recent blog post (November 1, 2013). Among the points I tried to make in this portion of the talk is that, in spite of the enhanced level of regulatory scrutiny afforded genetically altered microorganisms and algae, there are legitimate scientific questions that should be addressed in any risk assessment of a proposed large-scale use of modified organisms. These are questions relating to environmental dispersal and persistence of the organism, the potential for toxic or other adverse effects, and the potential for unwanted transfer of foreign genes to native microorganisms at the site of use. And I speculated on ways in which industry, academic and government researchers can work together to develop a research database to support regulatory risk assessments, and other ways in which the government might help, such as making government research laboratories or field sites available for confined outdoor experimentation.

This has necessarily been a very brief summary of the talk – more details are of course available in the slide deck itself. I also hope to publish a more detailed description and analysis of EPA’s TERA program, either for this blog or elsewhere, since I feel strongly that this process is one that many groups of researchers, including academic and government scientists, should use to begin to accumulate real-world data to establish whether or not large-scale open-pond uses of modified algae pose any significant, realistic environmental risks.

D. Glass Associates, Inc. is a consulting company specializing in government and regulatory affairs support for renewable fuels and industrial biotechnology. David Glass, Ph.D. is a veteran of over thirty years in the biotechnology industry, with expertise in industrial biotechnology regulatory affairs, U.S. and international renewable fuels regulation, patents, technology licensing, and market and technology assessments. More information on D. Glass Associates’ regulatory affairs consulting capabilities, and copies of some of Dr. Glass’s prior presentations on biofuels and biotechnology regulation, are available at and at The views expressed in this blog are those of Dr. Glass and D. Glass Associates and do not represent the views of any other organization with which Dr. Glass is affiliated. Please visit our other blog, Biofuel Policy Watch.